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ABSTRACT: The paper presents certain summary, and important extension of results obtained after long investigations led from years by 

the present author and his co-workers over instability and critical states of different structures. The essential works were done analytically 

and by some original own numerical methods with application of Finite Differences, including 3D-Time Space Method (3D-TSM – the 

four dimensional space). So, they provide observations from range of stability and dynamical stability of structures. There, key-part play 

formulated by Obrębski uniform criterion (used for determination of geometrical changeability and stability of structures). It can be applied 

as well for classical Euler's, Wagner's, Vlasov's tasks and too many others, for single straight bars as also for complicated structures 

composed from many different types elements (in it mixed and e.g. plates, too). Many previous examples were presented in the past on 

LSCE and on world-wide conferences. Application of 3D-TSM brings a lot interesting possibilities. Calculated non-conventional examples 

permits to present some new observations, definitions and graphical interpretation of critical states of structures. The method has as usually 

some limitations, too.  
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1. INTRODUCTION 

The present author, from years, step by step has leading own non-

conventional investigations over different questions from domain of 

structures critical states (SCS). These works were done analytically in 

range of straight thin-walled bars (TWBs) Refs 23, 27, numerically for 

complicated space bar structures Refs 20, 8, plates, even shells and in 

hybrid way. There were taken into consideration different manners of 

boundary conditions (supports) and various types of external loadings 

including whole sets of combined loadings in it also moving masses - 

groups of vehicles travelling over bridges, road belts or airport landing 

strips. Presented conclusions from mentioned examples are collected on 

basis of large own papers presented during almost all LSCE conferences 

and on IASS, SEMC (Cape Town) and on few other international 

conferences. Especially, formulation of Uniform Criterion (UC) opens 

many new horizons in domain of structures critical states. There, 

mathematic key-operation is comparison to zero main determinant Δ of 

stiffness matrix (SM) of the various types’ tasks (as well by analytical 

approaches as by numerically advanced ones). In the beginning of 

present paper is given short review of approaches to the phenomenon, 

and next are related shortly own investigations and examples from 

discussed domain. At last, the author presents late, new wide, 

comparative results concerning of moving loads on bridges. In this way 

the theses formulated in the beginning for UC, are completed by 

important, new serious and integral proof. It complete in important way, 

wide investigations led through year’s Refs 44, 72-74. 

2. METHODS FOR DETERMINATION OF CRITICAL STATES

In literature we can observe during centuries, many diverse approaches 

to seemingly other kind - different tasks for SCS. But, after detailed, 

closer observation, we can come to conclusion, that all these methods 

have common criterion of evaluation structures critical states. 

2.1. Analytical approaches to instability of structures 

In all even historical approaches, the tasks were coming down to 

comparison to zero certain, one or sets, of differential equations. They 

were derived very often in extremely some other ways, taking into 

consideration less or more advanced assumptions and theories, with 

various structure behaviour, its mechanical properties, boundary 

conditions, kind of external loadings and interaction with surrounding 

medium. In very short review, on the ground of a few more 

representative examples accessible in very wide literature, we can point 

below following typical solutions of tasks for SCS. 

Critical compressing axial forces for bended bars with a few different 

boundary conditions were determined by Leonard Euler (1707-83), Refs 

9, 17. There the bar has constant full cross-section (CS). The one 

derived differential equilibrium equation for statics only, is of fourth 

order. Finally, there was compared to zero certain expression taking into 

consideration bar boundary conditions, too.  

 In similar way as above were proceeded tasks in “older” literature for 

determination frequencies of own vibrations, Refs 10, 18. 

In academic manual addressed for students, written by P. Jastrzębski 

(1925-97), J. Mutermilch (1903-90) and W. Orłowski, Ref. 9, are 

presented very easy solutions for Euler’s tasks for compressed bars.  

Then, in the encyclopaedic edition by Sylwester Kaliski (1925-78), Ref. 

10, are presented some rather complicated, advanced solutions. In the 

“part two” by W. Bogusz are presented tasks for stability of nonlinear 

structural systems. There, we can find notions – definitions of: local, 

complete, absolute and technical stabilities. There, were discussed 

particular types of equations, for tasks very far from civil engineering 

applications. Are there presented also solutions for loads moving along 

straight beam. 

Special attention can be turned on stability of frames and trusses 

presented by Witold Nowacki (1911-86), Ref. 18. There, e.g. for 

continuous beams on a few supports, the task is also coming down to 

comparison to zero (main) determinant of the sets of homogenous 

equations. The same condition is obtained for frames and trusses. There, 

mentioned equations are obtained in different, mathematically advanced 

ways. From technical point of view presented examples are rather too 

simple. 

Some steps ahead (from technical point of view) are done for TWBs, in 

the book by V.Z.Vlasov’s (1905-58 ), Ref. 82, see also Refs 9, 17, 23. 

There, are used the sets of three differential equations – two for bending 

and third for torsion. Applying three displacement functions fulfilling 

boundary conditions was obtained determinant and its value (in form 
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function of longitudinal loading) finally compared to zero. In effect were 

calculated critical loadings of bending-torsion character. 

In general case, Vlasov has obtained the curve called as “izostaba”, 

collecting localizations of longitudinal force, were theoretically 

instability of the bar is impossible. But Vlasov has commented it 

contrary – just incorrectly. 

 Especially very clear explanation of above approach, were given by 

J. Mutermilch (1903-90) and A. Kociołek, Ref. 17. 

Further, Obrębski in manual Ref. 23 has given example of hybrid 

determination critical states for bar loaded by longitudinal force  P  and 

vibrating with frequency   . Next, in the Refs 63, 67, 68 are given 

examples various, combined loadings – longitudinal and transversal giving 

together critical states. In consequence, were defined and shown ultimate 

critical curves and ultimate critical surfaces. At last, in Ref. 73 was 

Investigated influence on critical state of bridge: its length and loadings 

travelling with certain velocity. 

2.2. Numerical methods determination of critical states 

All analytical methods of solution mechanical tasks are limited rather to 

very simple structures, with strongly narrow practical assumptions. 

There, often scientific discussion is very far from reality. Truth 

revolution in domain of applied, technical solutions, follows after 

introducing computer technology. Even here, we can observe numerous 

varieties of possible calculation technologies. Some of them, applied by 

present author, are commented below. 

Solution of the set linear algebraic equations. One of the mentioned 

methods is sequential Gauss eliminations, very useful and popular. But 

in domain of analysis of SCS, very important is Cramer’s method (see 

e.g. Ref. 23). There set of linear algebraic equations in the form: aijxj=bi 

where  i,j=1,2,3,..., n, has only one solution xj=Dj/D, and D=Δ  is the 

main determinant of the coefficients (or functions) matrix. Determinant 

 Dj  is obtained replacing in  D  the j-th column by column of free terms 

 bi . So, the case, when   

D=0  means   xj→ infinity. (1) 

Application of the Finite Element Method (FEM) 

The method has very wide literature. It can be applied in some different 

ways, and here will be not discussed. It is not exact.. (see Ref.76). 

Application of the Finite Differences Method (FDM) 

There, exists some ways on obtaining the Finite Differences Operators 

(FDO) describing e.g. internal forces for bars or matrix equilibrium 

equation of the whole structure: 

Kx=Q, (2) 

Above equation is in reality the set of linear algebraic equations. The 

method can be applied in some different ways, too. In one of them, the 

traditional differential equations are formally transformed into FDO 

(see e.g. Ref. 27, 29, 43). 

Application of the Difference-Matrix Equations Method (DMEM) 

Also this method can be applied in some different ways. The first time it 

was used for calculation of plane hexagonal grids, Ref. 19, and next, 

extended on complicated space bar structures, Refs 20, 21, 23, 5. In this 

description we obtain the global equilibrium equation of whole structure 

Eqn 2 as set of linear algebraic equations. There, for bar structures we 

have for each node identical number unknown displacements, as in 

FEM. 

Application of commercial programs. The present author has using in 

most cases own, elaborated (written) by him selves programs, or 

sometimes ROBOT Millennium or MS Excel. 

2.3. Hybrid methods for determination of critical states 

An example of hybrid method application is the task on dynamical-

stability heavy steel beam – loaded by longitudinal force and freely 

vibrating with frequency ω, (Example 11.1, Ref. 23). In hybrid 

solutions, the derived equations (differential or FDO) are elaborated 

(transformed, e.g. reduced number of unknown as in plates) analytically 

and next, last step is executed finally by computer. 

2.4. 3D-Time space method 

In this approach it is assumed, that solutions concern of the space 

extended to the four dimensions – three for 3D space and the fourth for 

time. The idea was developed by several authors and in Poland 

especially by Z.Kączkowski (1921-) Refs 11-13 and his co-workers e.g. 

Refs 7, 14, 75, 80, 81. Wider literature for previous such investigations 

can be found in pointed above references. Indicated here publications 

are oriented by Kączkowski on application of Finite Element Method 

(FEM) extended on the fourth dimension – the time. Such approach was 

named by its originator (Ref. 13) as MECZ (shortening - first letter in 

Polish). The solved in these way examples were rather technically 

simple. 

Certain step ahead was done in the doctor theses of R.Szmit, by 

dynamical analysis of tall buildings, Ref. 79. There, were taken into 

consideration four differential equations, transformed to Finite 

Differences Operators (FDO). All was described as in 3D-Time Space 

Method (3D-TSM). Simultaneously, the method was applied by its 

originator to masses (forces) travelling on bars (bridges), plates (airport 

landing belts or roads), Refs 38, 46. 

As the next important step it was application such description to 

stability and dynamical stability of the different structures: columns 

and bridges behaviour under mowing loads, Refs 27, 35, 41, 42, 71-73. 

In the last case, the 3D-TSM was used for testing behaviour of some 

bridges under travelling masses with wide spectrum of velocities. First 

time it was presented in Ref. 44 (2004). 

3. UNIFORM CRITERION

On importance investigation of main determinant Δ of whole structure 

was turning the book, Ref. 2. There it was written, that: “by numerical 

calculations of structures, value (main determinant) of coefficients 

matrix of set of equilibrium equations written (composed) for all nodes 

(of frame or truss), must be different from zero”. “Contrary, it means 

geometrical changeability (GC) of space bar structure”.  

Now, we can express conviction, that it is exact method of solution of 

instability problems, the most ingenious and efficient.  So, value of 

main determinant of coefficients forming stiffness matrix  K  of 

structure equal zero  Δ=det[K]=0  prove its geometrical cheangeability 

(compare Eqn 1) or structure critical state. 

In the book Ref. 2, it was commented, than (that time 1970) the approach 

is time-consuming (structure with 238 nodes and 792 bars was analysed by 

program written in ALGOL 60 in time of 90 minutes 

Just the method was applied in author’s computer programs WDKM and 

KMT, Refs 20, 8.  There, possibility of GC for space bar structures was 

checked (tested) on two stages. On the first computer program has 

checking in local sense postulates formulated in Ref. 20 and quoted in 

Ref. 8, too. It points probable reason. Next, on second stage, after 

completion of SM - K, while – by the way of determination unknown 

displacements when solving set of linear algebraic equations. So, applying 

the method of sequential Gauss eliminations was calculated value 

Δ=det[K] for SM of whole structure according to formula, Ref. 18: 

det[K]= K11 K
1
22 K

2
33 .......K

l-1
ll.......K

n-1
nn ,   (3) 

It is a product of terms standing on main diagonal modified stiffness 

matrix after "n" eliminations, in row with number "n" (with some 

restrictions), see Ref. 20. 

After own experiences and review accessible solutions in wide literature 

provided by centuries, Obrębski has formulated the Uniform Criterion 

(UC) – in Zakopane, Poland, Ref. 28 (1997),  and next, in Refs 34, 53.   

4. MULTICRITERIAL CRITICAL STATES

On multicriterial character of critical states of structures, presented in 

various tasks by worldwide literature, has turned attention Obrębski in 

Ref. 45, (2004) Cape Town, South Africa and in Ref. 55, (2008), Itaka, 

USA. From that times, were started more systematic investigations of 

influence particular parameters and structure properties on its critical 

state, Refs 51, 54, (with Tolksdorf) and in Refs 65, 67, 68. 

So, it was tested influences of following type variables: 

- value of external loading (Euler, 1707-83), 

- length of the bar and slenderness (Euler, 1707-83), 

- influence of boundary conditions of structures, Refs. 9, 17, 27, 
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- influence of material including composite ones, Ref. 27,  

- type of bar cross-section, (one of the historically older), Refs 9, 

23, 27 (here can be helpful various approaches see Refs 3, 4, 22, 

25, 26, 30-33, 36, 39, 61, 62, 65), 

- external combined loadings, Refs 54, 

- kind of travelling mass, Refs 6, 16, 73, 77, 

- mass of the structure, Ref. 23, 

- velocity of travelling mass (masses), Refs 71-73.  

5. CRITICAL STATES OF THIN-WALLED STRAIGHT BARS

Es it was mentioned, the significant progress in investigation of bars 

behaviour was done by analysis of thin-walled bars (TWBs). Especially 

in range of theory of second order including instability of the bars, were 

in integral way applied four differential equations as for its bending-

torsion behaviour. Here should be pointed some authors (see Ref 23), 

but the most important is quoted Vlasov’s book, Ref. 82. The theory 

was published or modified in different manner world-wide (for certain 

reviews see Ref. 23). In the most clear and easy way it was presented by 

J. Mutermilch (with co-authors), Refs 9, 17.  

Important extension of above theory is given in Refs 23, 27, 60, 63 etc. 

It embraces for thin-walled prismatic bars: statics (in it stability), 

dynamics - including dynamical stability (both with general dumping – 

as in Ref. 74), combined loadings (also for longitudinal forces positive 

and negative), homogenous and composite bar CSs etc. Given examples 

presents: analytical, numerical and hybrid solutions. 

6. CRITICAL STATES FOR PLATE STRUCTURES

The list of authors presenting solutions for plates is very long. Here are 

mentioned such names, only: for plates Z. Kączkowski (analytically and 

numerically including FDM, Ref 15), M. Kwieciński and others, all in 

range of bending behaviour. 

Certain solutions by FDM is also presented by present author for mass 

(force) travelling along landing air belt and on curved path or circular 

line. So, in such type tasks calculated by FDM, is produced SM like in 

Eqn 2. Therefore, we can expect that even here can be found certain 

critical parameter, e.g. thickness of plate (for certain travelling mass) or 

velocity of the mass. Such example up to the moment was not tested. 

7. CRITICAL STATES OF BRIDGES UNDER MOVING MASSES

The first recognition of the above question was given in authors paper 

Ref. 44. In two last years’ (2017, 2018) present author has turning 

special attention on behaviour of bridges – its answer on moving loads, 

Refs 71-73. There, are observed as well displacements of girder 

(deflections and rotations) as instability phenomenon (values  of SM - 

main determinant K). For recognition influence of some parameters of 

the task, were calculated and compared results for at all 312 similar 

bridges with thin-walled steel cross-section, with a few lengths, with 

two values of masses, travelling with different uniform velocities (see 

Tables 1-7).  

Fig. 1 Cross-section of analyzed bridge, close to reality, Refs 6, 16, 77, 

and Refs 71-73 

As the first step, the task was given for testing by six students: 

(A. Franus, T. Kleber, J. Kutyna, J. Rawiak, Ł. Rogula, T. Tarabasz e.g. 

Refs 6, 16, 77) in scope of their homework. In all similar tasks, were 

investigated the steel girders simply supported, having cross-section as 

in the Fig. 1, and lengths L=50, 60, 70, 80, 90 and 100m (one in each 

homework). There, thickness of girder should assure static deflection 

0,001 L of bridge span. Moreover, was travelling one concentrated mass 

Q=20t with uniform velocities in each homework: v=50, 100, 200, 300 

and 600 km/h. Despite of certain inadvertences, obtained results 

confirm expectations and permit on formulation of final assumptions for 

more serious and large tests – see below. 

By application of the 3D-TSM combined with FDM, it is possible to 

analyse tasks with taking into consideration: 

- single mass or set of masses travelling on bridge, 

- own mass of structure (bridge) – according to its rigidity, 

- velocity of travelling mass, 

- length of bridge and its cross-section, 

- dumping by interaction of surrounding medium- air, water, liquid. 

So, the method seems to be universal, and open wide technical 

possibilities. 

Analysed bridges. The tested bridges have one span simply supported 

thin-walled girder with CS having three closed circuits, Fig. 1. Six 

tested lengths of bridge girder were: L=50, 60, 70, 80, 90 and 100 m.  

Over bridge was travelling one concentrated mass with alternatively two 

values: 20 and 100 t. Thickness of girder CS is different and assures 

approximately static deflections of bridge equal 0,001 L. The girder 

cross-section is built on square mesh 6x6 m, what gives overall its 

dimensions 30x6 m, Fig. 1. It is very close to CSs used in real bridges. 

Assumed velocities of travelling mass were in most cases identical as in 

students tasks: v=50, 100, 200, 300, and 600 but extended on 1200 

km/h, too. Bar was divided on 8 or 10 sections. But in calculated 

examples with bar division on ten sections and with travelling mass 

Q=100 t (1000 kN), were calculated more numerous velocities: v= 50, 

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1500, 

1800, 2100, 2400 and 2700 km/h (last velocity higher than 2 speed of 

sound, see Tables1-7). 

Applied theory.   In pointed above tasks used for testing bridges, were 

applied set of four differential equations of four order, derived by 

present author, Ref. 23. In these equations can be taken into 

consideration dumping (see Ref. 74) following of girder interaction with 

surrounding medium (wind pressure, suction, friction and aero-or 

hydrodynamic effects). In discussed examples, the dumping was 

omitted. For the specific properties of bridge and taken assumptions, 

this set of four equations was reduced to two separate equations, finally 

transformed (Ref. 27) into FDO, see Refs 71, 72.  

Finite Differences Equations for analysed bridges.  The general 

four differential motion equations from Ref. 23 were step by step 

simplified (see Ref. 71) and in consequence reduced to two FDO of four 

order, Egns 4, 5. They are describing dynamics of the bridge, with 

except of dumping effects and are quoted in Ref. 71. All results 

obtained by means of these equations are discussed and quoted below. 

In Eqns 4, 5, lower indices separated by coma, points actual point in 

3D-Time space (t, i). The same point „i” of bar division on sections, in 

previous time moment is denoted as (t-1, i) and in next time step as 

(t+1, i). Here 3vw =  means deflections and  rotation. For other 

explanations see Ref. 73. 
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Symbols Ki  and  Gi means certain coefficients (see Ref.73). In above 

equations three rows are describing three sequential time moments.  

Dynamic stiffness matrix as FDO for analysed bridges. After writing 

FDO - Eqn 4 and/or Eqn 5 for all points „i”  of the bar division, is obtained 

dynamic stiffness matrix (DSM), containing information about scheme of  

girder, its boundary conditions, velocities and positions of vehicles on 

bridge for all discrete time moments, Fig.2. In consequence the task is 

coming to solution of the set of linear algebraic eqns type Eqn 2. It has 

band, symmetrical character. So, in own program DGPST was used upper 

half band of K (Eqn 2), completed by column of “loadings” Qi . 

In the case, when on each node are used one Eqn 4 or 5, then we apply Eqn 

61 . But when for each point of the girder are used two or more Eqns, in 

such case are applied equations type 62.  So, in the second case we say, that 

it is used Difference-Matrix Equation Method (DMEM – description 

applied in computer program WDKM Ref. 20), see also Refs 21, 23, 37. 
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Much more detailed explanations of composition Eqn 2 are given in Refs 

35, 71, 72, and 79. 
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Space 3D-time from numerical point of view belongs to 2D tasks. 

There, we have equilibrium state of structure, as Eqn 2, taken together 

for all time moments (in Fig. 2 for 7 moments).  

Time m. t=1 t=2 t=3 t=4 t=5 t=6 t=7 

t=1 Kr Vr Q1 

t=2 Vr Kr Vr Q2 

t=3 Vr Kr Vr Q3 

t=4 Vr Kr Vr Q4 

t=5 Vr Kr Vr Q5 

t=6 Vr Kr Vr Q6 

t=7 Vr Kr Q7 

Fig. 2 DSM Eqn. 31 -  K  and terms Q for the bar, when m=7,  n=7, l=1, 

by uniform motion. All sub-matrices have dimensions: Kr[7x7],Vr[7x7] 

Here matrix K as DSM, Ref 73 (Mech.) has number of rows and 

columns equal mnlN = , and  l   means number equations used for 

each node (e.g. one to four as Eqns 4, 5);  n  - number points of girder 

division;  m – number of assumed time moments with time distance t . 

So, each element of global  DSM -  K[N×N]  is traditional stiffness 

matrix K[w×w], where nlw = , Refs 71-73. Moreover, boundary 

conditions for girder are taken into account traditionally (Ref. 27) and 

for initial time  t=0  (known or equal zero) and final –usually as „back” 

difference. In Ref 73 are show two variants of DSM, when are used 

Eqns 4, 5 – for bending and torsion (Ref. 73, Figs 5, 6). In the first case 

is applied system of unknowns w and  grouped together – what gives  

width of half-band m=16 (Fig. 5, for n=8) and mixed system – when for 

each node displacements w and  are used alternately, resulting with 

m=17 – a little less optimal, (Ref. 73, Fig 6, for n=8). 

Values of main determinant for analysed bridges. In Ref 73, are also 

given a few results presenting calculated values of main determinant for 

matrix  K  for analysed bridges. Below, in Tables 1and 2, are given 

values  for all tasks analysed in assumed investigations. In the first 

case (columns 3, 6, 9) is calculated value of  for bridge only. In two 

next columns are shown values of  for 14 (for n=8) or 18 (for n=10) 

time moments, when loading is throw 7 or 9 time moments moving also 

after the bridge. In each third case (columns 5, 8, 11) the value of  was 

calculated by own program DGPST (here, for solution of Eqn 2 the 

symmetrical global stiffness matrix K is remembered as upper half band, 

only) written by J.B Obrębski. So, the value of    is obtained by the 

way while solving Eqn 2, as set of linear algebraic equations.  

Table 1. Values  main determinant of stiffness matrix  K  composed for deflections of bridge loaded by travelling one force (mass) P=200 or 1000 

kN and with division of girder on  n=8 or 10 sections 

Span 
Velo-

city 

Value of  by deflection w ;   P=200 kN Value of  by deflection w ;   P=200 kN Value of  by deflection w ;  P=1000 kN 

n=8 n=8 n=8 n=10 n=10 n=10 n=8 n=8 n=8 

L= v= Bridge, only Bridge+after Bridge+after Bridge, only Bridge+after Bridge+after Bridge, only Bridge+after Bridge+after 

m km/h MS-Excel MS-Excel JO DGPST MS-Excel MS-Excel JO DGPST MS-Excel MS-Excel JO DGPST 

1 2 3 4 5 6 7 8 9 10 11 

50 50 3,26E+12 1,59E+27 1,06E+25 5,48E+17 3,00E+35 3,00E+35 4,11E+12 2,45E+27 1,69E+25 

100 1,20E+12 2,42E+26 1,42E+24 6,11E+16 3,65E+33 3,65E+33 3,35E+12 1,66E+27 1,12E+25 

200 3,77E+08 -8,09E+18 5,67E+16 2,81E+14 -2,65E+28 -2,65E+28 1,36E+12 3,05E+26 1,83E+24 

300 8,58E+10 1,77E+24 6,60E+21 1,46E+17 1,89E+34 1,89E+34 1,99E+11 8,30E+24 3,75E+22 

600 2,79E+13 -1,14E+28 6,45E+25 1,23E+18 8,78E+33 8,80E+33 2,98E+10 3,89E+22 7,19E+20 

1200 -4,56E+15 -6,02E+33 3,08E+32 -5,51E+21 5,30E+44 5,30E+44 1,80E+12 -1,34E+26 -9,66E+23 

60 50 2,86E+12 1,24E+27 4,18E+17 1,74E+35 2,86E+12 1,24E+27 

100 6,17E+11 6,99E+25 1,13E+16 1,18E+32 6,17E+11 6,99E+25 

200 -6,09E+09 -1,42E+21 -4,39E+15 -2,51E+30 -6,09E+09 -1,42E+21 

300 -6,63E+11 -7,14E+25 -1,93E+18 -1,13E+36 -6,63E+11 -7,14E+25 

600 -2,83E+12 1,30E+26 1,52E+20 1,15E+40 -2,83E+12 1,30E+26 

1200 -1,93E+16 7,95E+32 3,63E+24 6,57E+50 -1,93E+16 7,95E+32 

70 50 2,44E+12 9,20E+26 2,99E+17 8,91E+34 2,44E+12 9,20E+26 

100 2,46E+11 1,25E+25 4,86E+14 1,72E+29 2,46E+11 1,25E+25 

200 3,79E+10 7,63E+21 7,85E+16 4,35E+33 3,79E+10 7,63E+21 

300 -3,71E+12 -2,93E+26 -8,93E+18 7,26E+37 -3,71E+12 -2,93E+26 

600 -5,44E+12 -1,72E+29 -4,42E+21 6,94E+42 -5,44E+12 -1,72E+29 

1200 5,38E+17 7,50E+35 -6,01E+26 4,26E+54 5,38E+17 7,50E+35 

80 50 2,02E+12 6,45E+26 1,99E+17 3,94E+34 2,02E+12 6,45E+26 

100 6,31E+10 9,92E+23 1,34E+13 8,68E+25 6,31E+10 9,92E+23 

200 7,77E+10 6,11E+24 9,45E+16 -1,37E+35 7,44E+09 -3,03E+23 

300 -9,34E+10 -2,00E+27 5,99E+17 -1,93E+38 -9,34E+10 -2,00E+27 

600 3,83E+13 -2,28E+31 1,73E+21 1,10E+46 3,83E+13 -2,28E+31 

1200 2,87E+19 4,08E+39 4,90E+28 -2,14E+56 2,87E+19 4,08E+39 

90 50 1,61E+12 4,24E+26 1,22E+17 1,46E+34 1,61E+12 4,24E+26 

100 4,75E+09 8,10E+21 -3,10E+13 -4,27E+27 4,75E+09 8,10E+21 

200 -6,48E+11 -7,16E+25 -2,08E+18 -1,79E+36 -6,48E+11 -7,16E+25 

300 2,40E+13 -4,30E+28 8,76E+18 -5,96E+37 2,40E+13 -4,30E+28 

600 -6,28E+15 1,41E+33 -9,70E+23 -8,76E+47 -6,28E+15 1,41E+33 

1200 -6,83E+20 -7,19E+40 -1,56E+30 2,65E+58 -6,83E+20 -7,19E+40 
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Table 1. Values  main determinant of stiffness matrix  K  composed for deflections of bridge loaded by travelling one force (mass) P=200 or 1000 

kN and with division of girder on  n=8 or 10 sections (cont.) 

Span 
Velo-

city 

Value of  by deflection w ;   P=200 kN Value of  by deflection w ;   P=200 kN Value of  by deflection w ;  P=1000 kN 

n=8 n=8 n=8 n=10 n=10 n=10 n=8 n=8 n=8 

L= v= Bridge, only Bridge+after Bridge+after Bridge, only Bridge+after Bridge+after Bridge, only Bridge+after Bridge+after 

m km/h MS-Excel MS-Excel JO DGPST MS-Excel MS-Excel JO DGPST MS-Excel MS-Excel JO DGPST 

1 2 3 4 5 6 7 8 9 10 11 

100 50 1,24E+12 2,60E+26 1,53E+24 6,68E+16 4,36E+33 4,36E+33 3,46E+12 1,77E+27 1,20E+25 

100 9,44E+07 -1,27E+19 -2,32E+17 3,16E+14 3,68E+28 3,68E+28 1,58E+12 4,05E+26 2,47E+24 

200 -2,78E+12 -4,33E+26 6,34E+24 -8,08E+18 4,53E+37 4,53E+37 3,54E+09 4,62E+21 6,47E+18 

300 5,03E+13 -4,64E+28 9,20E+25 -2,04E+17 1,70E+34 1,70E+34 1,57E+10 -3,59E+22 -2,23E+20 

600 -3,56E+16 -4,37E+34 2,79E+32 -6,42E+23 -1,66E+46 -1,66E+46 1,54E+13 -1,66E+28 -2,44E+26 

1200 7,62E+20 4,03E+40 1,46E+40 3,68E+32 -2,68E+62 4,68E+65 -3,33E+15 3,27E+32 -1,91E+31 

In both tables 1and 2 values of the determinants  calculated for mass 

travelling only on bridge (time moments 1-7 (n=7) or 1-9 (n=10), are 

printed by normal letters (columns 3, 6, 9). Contrary, the values of  for 

whole task 14 (n=8) or 18 (n=10) time moments, when mass is 

travelling throw the bridge and identical time period after it, are printed 

by italic letters (columns 4, 5, 7, 8, 10, 11). 

Similar mode of distinction is applied in Tables 3 and 4. Moreover, in 

all Tables 1-4 by bold letters are distinguished negative values of 

determinant . Such outlook of presented results, facilitate to analyse 

critical states of particular bridges. It should be explained, that each 

passing through zero value of  means critical velocity of mass. Such 

precise critical velocities were here not calculated. 

Table 2. Values  of main determinant of stiffness matrix  K  composed only for torsion of bridge loaded by travelling one force (mass) P=200 or 

1000 kN and division of girder on  n=8 or 10 sections  

Spa

n 

Velo

-city 

Value of  by torsion  ;   P=200 kN Value of  by torsion  ;   P=200 kN Value of  by torsion  ;   P=1000 kN 

n=8 n=8 n=8 n=10 n=10 n=10 n=8 n=8 n=8 

L= v= Bridge, only Bridge+after Bridge+after Bridge, only Bridge+after Bridge+after Bridge, only Bridge+after Bridge+after 

m km/h MS-Excel MS-Excel JO DGPST MS-Excel MS-Excel JO DGPST MS-Excel MS-Excel JO DGPST 

1 2 3 4 5 6 7 8 9 10 11 

50 50 1,99E+35 5,94E+71 9,69E+47 9,21E+95 4,03E+31 4,43E+64 

100 -3,31E+31 1,00E+64 3,39E+44 1,13E+89 -1,80E+31 -1,46E+62 

200 -9,64E+31 5,43E+63 3,45E+44 -2,02E+89 6,77E+33 -4,68E+68 

300 8,37E+32 2,10E+66 3,14E+45 -1,78E+90 2,69E+37 3,88E+70 

600 2,88E+34 -3,45E+70 7,74E+51 -2,09E+105 1,39E+62 2,52E+123 

1200 3,39E+55 1,48E+114 3,03E+78 7,92E+155 5,13E+93 3,00E+184 

60 50 1,36E+40 2,26E+81 6,93E+54 4,71E+109 1,36E+40 2,26E+81 

100 -1,76E+36 4,24E+73 2,22E+51 4,62E+102 -1,76E+36 4,24E+73 

200 -2,63E+35 -1,62E+72 -1,43E+51 -2,50E+102 -2,63E+35 -1,62E+72 

300 1,63E+37 -2,36E+74 -5,94E+52 -1,86E+104 1,63E+37 -2,36E+74 

600 -1,74E+39 1,38E+80 1,83E+57 -3,66E+115 -1,74E+39 1,38E+80 

1200 9,76E+64 -6,35E+129 -6,26E+91 -1,13E+182 9,76E+64 -6,35E+129 

70 50 4,67E+44 2,27E+90 2,51E+61 6,16E+122 4,67E+44 2,27E+90 

100 -4,45E+40 2,59E+82 7,06E+57 4,29E+115 -4,45E+40 2,59E+82 

200 1,69E+40 -9,76E+80 -5,83E+57 1,50E+115 1,69E+40 -9,76E+80 

300 5,05E+40 -3,02E+80 -1,68E+58 7,53E+116 5,05E+40 -3,02E+80 

600 -2,84E+43 -1,41E+86 -4,98E+63 8,88E+126 -2,84E+43 -1,41E+86 

1200 -1,25E+72 1,59E+141 -2,34E+102 -9,72E+205 -1,25E+72 1,59E+141 

80 50 7,08E+48 4,66E+98 3,57E+67 1,25E+135 7,08E+48 4,66E+98 

100 -5,08E+44 2,88E+90 8,85E+63 6,23E+127 -5,08E+44 2,88E+90 

200 2,12E+44 7,70E+88 -5,59E+63 1,75E+127 2,12E+44 7,70E+88 

300 -3,81E+44 -7,41E+87 2,39E+64 2,98E+127 -3,81E+44 -7,41E+87 

600 -9,97E+47 1,41E+95 -1,49E+69 -3,82E+136 -9,97E+47 1,41E+95 

1200 -6,40E+77 -1,33E+153 4,47E+112 2,11E+223 -6,40E+77 -1,33E+153 

90 50 5,18E+52 2,29E+106 2,12E+73 4,38E+146 5,18E+52 2,29E+106 

100 -2,87E+48 7,02E+97 4,70E+69 1,63E+139 -2,87E+48 7,02E+97 

200 9,92E+47 4,57E+96 -2,07E+69 2,38E+138 9,92E+47 4,57E+96 

300 -2,16E+48 -7,16E+95 7,01E+69 -2,42E+138 -2,16E+48 -7,16E+95 

600 1,41E+53 1,09E+104 -6,03E+74 1,43E+147 1,41E+53 1,09E+104 

1200 -1,08E+82 -4,47E+163 6,46E+119 -4,43E+239 -1,08E+82 -4,47E+163 

10

0 

50 2,24E+56 4,00E+113 6,70E+78 4,39E+157 3,14E+51 -2,03E+106 

100 -9,84E+51 4,74E+104 1,35E+75 1,27E+150 -1,57E+51 -1,53E+104 

200 2,46E+51 5,33E+103 -4,14E+74 8,90E+148 2,79E+51 -1,04E+105 

300 -3,86E+51 1,73E+103 7,20E+74 -2,26E+148 -5,96E+59 1,07E+122 

600 5,42E+55 2,31E+113 -1,19E+80 -5,74E+158 1,93E+90 -1,96E+182 

1200 8,46E+86 3,51E+172 -7,79E+127 2,26E+253 1,71E+122 -1,40E+242 
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Comments to critical states of bridges under moving masses. More 

detailed observations of Tables 1-4 permit to conclude, that it is serious 

difference in values of  obtained by commercial program MS Excel 

and own DGPST written in RM Fortran. Such differences can occur as 

result of other length of remembered “words” by computer.  

Moreover, more recommended are rather critical values calculated for 

mass acting on bridge, only (columns 3, 6, 9). Values of  quoted in 

columns 5, 8, 11 were obtained by calculation deflection lines for 

bridge, when mass is moving uniformly through bridge and some way 

after. It permit to observe “answer” of girder (deflections) also after it 

passing, as in the Fig. 8. For limited volume even these paper, such 

diagrams are here not presented. 

As it was shown in the work Ref. 20, on the ground of numerical test of 

own program WDKM in range theory of I-st and the II-nd order, 

compared with analytical exact Euler’s solution, that after passing 

critical value of longitudinal compressing force, displacements grow up 

to infinity (see Eqn 1) and the task show losing of equilibrium state 

reactions and external loading. So, results given in Tables 1-4should be 

analysed together with calculated deflection lines of travelling loadings, 

too. 

In calculated examples, were compared results for bridges simply 

supported with spans L=50, 60,70, 80, 90 and 100 m. Shown results 

permit to conclude, that on velocity of travelling mass are more 

impressionable longer bridges. 

To the program of comparative examples were included calculations of 

similar tasks, when the bridge girder is divided on n=8 or n=10 sections 

and its influence on values obtained critical velocities. It is evident, that 

more dense division should assure better result. But here, in case of 

calculation of values , appears problem with magnitude of obtained 

numbers. So, density of division should be carefully selected and 

limited. As it follows, especially from Table 4, the values of torsion of 

girder are much bigger then for bending.  There, for velocity of mass 

bigger of 800 kN/h program MS Excel display announcement about to 

big numbers (indicate “#NUMBER!”). But when applying program 

DGPST such problem is not observed. 

Table 3. Values of main determinant of stiffness matrix  K  for 

deflections of bridge loaded by travelling one force (mass)  

P= 1000 kN and division of girder on  n=10 sections 

Span 
Velo-

city 

Value of  by deflection w ;   P=1000 

n=10 n=10 n=10 

L= v= Bridge, only Bridge+after Bridge +after 

m km/h MS-Excel MS-Excel JO DGPST 

1 2 3 4 5 

50 50 8,74E+17 7,64E+35 7,64E+35 

100 5,76E+17 3,32E+35 3,32E+35 

200 8,28E+16 6,74E+33 6,73E+33 

300 2,33E+14 3,66E+28 3,17E+62 

600 3,47E+16 9,94E+32 9,94E+32 

1200 -5,69E+16 -7,50E+32 -7,50E+32 

60 50 4,18E+17 1,74E+35 

100 1,13E+16 1,18E+32 

200 -4,39E+15 -2,51E+30 

300 -1,93E+18 -1,13E+36 

600 1,52E+20 1,15E+40 

1200 3,63E+24 6,57E+50 

70 50 2,99E+17 8,91E+34 

100 4,86E+14 1,72E+29 

200 7,85E+16 4,35E+33 

300 -8,93E+18 7,26E+37 

600 -4,42E+21 6,94E+42 

1200 -6,01E+26 4,26E+54 

80 50 2,24E+11 4,47E+21 

100 -1,22E+09 4,81E+16 

200 1,97E+11 -3,21E+21 

300 1,84E+12 -3,02E+23 

600 2,71E+14 1,03E+28 

1200 -1,29E+18 1,03E+35 

Table 3. Values of main determinant of stiffness matrix  K  for 

deflections of bridge loaded by travelling one force (mass)  

P= 1000 kN and division of girder on  n=10 sections (cont.) 

Span 
Velo-

city 

Value of  by deflection w ;   P=1000 

n=10 n=10 n=10 

L= v= Bridge, only Bridge+after Bridge +after 

m km/h MS-Excel MS-Excel JO DGPST 

1 2 3 4 5 

90 50 1,70E+11 2,54E+21 

100 2,30E+09 3,93E+17 

200 8,69E+11 2,40E+22 

300 3,93E+11 -1,23E+23 

600 -4,42E+14 -4,89E+28 

1200 1,91E+18 -5,66E+34 

100 50 6,17E+17 3,81E+35 3,81E+35 

100 1,15E+17 1,32E+34 1,32E+34 

200 -1,93E+13 -4,94E+27 -4,94E+27 

300 3,54E+16 1,66E+32 1,66E+32 

400 -1,55E+18 -6,74E+35 -6,74E+35 

500 -3,67E+18 4,67E+36 4,67E+36 

600 1,03E+18 -5,13E+35 -5,13E+35 

700 -3,22E+18 2,01E+36 2,01E+36 

800 1,39E+20 1,10E+40 1,10E+40 

900 -1,18E+21 -3,15E+39 -3,18E+39 

1000 -2,20E+21 2,79E+42 2,79E+42 

1100 -1,34E+22 5,67E+44 5,67E+44 

1200 -3,64E+22 -1,18E+45 -1,18E+45 

1500 -2,41E+24 -8,37E+47 -8,37E+47 

1800 -2,30E+26 3,72E+51 3,72E+51 

2100 2,19E+25 3,77E+52 3,77E+52 

2400 -4,60E+28 1,32E+57 1,32E+57 

2700 1,72E+28 8,90E+54 8,89E+54 

Displacements of analysed bridges under moving masses. In 

calculated examples was foreseen observation of displacements lines of 

analysed bridges. Such comparisons were limited to deflections  w  (Eqn 

4) and rotations – torsion angles   (Eqn 5). From numerical point of 

view, they both are independent. But from physical point of view, they 

should be considered and analysed commonly. Here also from limited 

volume of this paper, presented results are in Tables 5 to 7 strongly 

limited. There, are shown only position of moving mass, and points in 

the tasks, where displacement obtains maximal and minimal values. 

Detailed comments to showing results are here not given. 

It is worthy to turn the attention, that only for girder with length L=100 

m divided on n=10 sections, results of calculated displacements are 

show for mass velocity up to v=2700 km/h – it exceed much over 2 

times speed of sound, and is rather not noted in civil - bridge 

engineering. 

Table 4. Values of main determinant of stiffness matrix  K  for torsion 

of bridge loaded by travelling one force (mass)  P= 1000 kN and 

division of girder on  n=10 sections 

Span 
Velo-

city 

Value of  by torsion  ;   P=1000 

n=10 n=10 n=10 

L= v= Bridge, only Bridge +after Bridge +after 

m km/h MS-Excel MS-Excel JO DGPST 

1 2 3 4 5 

50 50 -5,55E+44 -3,45E+89 -3,45E+89 

100 -2,63E+45 5,43E+89 5,43E+89 

200 -3,99E+48 -2,92E+97 -2,92E+97 

300 -1,29E+53 -6,55E+102 -6,55E+03 

600 -9,36E+86 -2,13E+172 -2,13E+73 

1200 8,14E+136 1,43E+272 1,44E+74 
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Table 4. Values of main determinant of stiffness matrix  K  for torsion 

of bridge loaded by travelling one force (mass)  P= 1000 kN and 

division of girder on  n=10 sections (cont.) 

Span 
Velo-

city 

Value of  by torsion  ;   P=1000 

n=10 n=10 n=10 

L= v= Bridge, only Bridge +after Bridge +after 

m km/h MS-Excel MS-Excel JO DGPST 

1 2 3 4 5 

60 50 6,93E+54 4,71E+109 

100 2,22E+51 4,62E+102 

200 -1,43E+51 -2,50E+102 

300 -5,94E+52 -1,86E+104 

600 1,83E+57 -3,66E+115 

1200 -6,26E+91 -1,13E+182 

70 50 2,51E+61 6,16E+122 

100 7,06E+57 4,29E+115 

200 -5,83E+57 1,50E+115 

300 -1,68E+58 7,53E+116 

600 -4,98E+63 8,88E+126 

1200 -2,34E+102 -9,72E+205 

80 50 2,24E+11 4,47E+21 

100 -1,22E+09 4,81E+16 

200 1,97E+11 -3,21E+21 

300 1,84E+12 -3,02E+23 

600 2,71E+14 1,03E+28 

1200 -1,29E+18 1,03E+35 

90 50 2,12E+73 4,38E+146 

100 4,70E+69 1,63E+139 

200 -2,07E+69 2,38E+138 

300 7,01E+69 -2,42E+138 

600 -6,03E+74 1,43E+147 

1200 6,46E+119 -4,43E+239 

100 50 -2,35E+75 3,03E+150 3,03E+51 

100 7,49E+73 3,44E+146 3,44E+47 

200 -5,75E+75 -5,70E+151 -5,70E+52 

300 7,91E+84 -5,85E+171 -5,85E+72 

400 4,47E+104 -9,66E+209 1,72E+63 

500 9,57E+122 1,38E+244 1,38E+46 

600 8,87E+134 6,67E+270 6,67E+72 

700 2,54E+147 3,97E+292 3,97E+94 

800 -6,75E+156 #NUMBER! -6,32E+13 

900 6,97E+164 #NUMBER! -2,41E+32 

1000 1,54E+174 #NUMBER! 2,55E+47 

1100 2,78E+180 #NUMBER! 8,49E+59 

1200 -2,43E+187 #NUMBER! -3,66E+73 

1500 5,20E+201 #NUMBER! 3,34E+06 

1800 -4,33E+216 #NUMBER! -2,86E+33 

2100 -1,76E+229 #NUMBER! -4,22E+54 

2400 -2,38E+239 #NUMBER! 4,40E+74 

2700 -1,25E+248 #NUMBER! -1,55E+91 

For empty cells in Tables 2-4, were not calculated displacement lines 

and values  . 

Table 5. Deflections  w  of bridges – positions of loading with 

maximums and minimums;   n=8 

Force Span 
Velo-

city 

Posi-

tion 

P 

Deflection 

Posi-

tion 

P 

Deflection 

P= L= v= T= Point Max. T= Point Min. 

kN m km/h Nr. Nr. m Nr. Nr. m 

200 50 50 4 4 0,05103 8 4 -0,00037 

100 4 4 0,05146 8 4 -0,00173 

200 5 4 0,123 9 4 -0,102 

300 5 4 0,054 9 4 -0,028 

Table 5. Deflections  w  of bridges – positions of loading with 

maximums and minimums;   n=8 (cont.) 

Force Span 
Velo-

city 

Posi-

tion 

P 

Deflection 

Posi-

tion 

P 

Deflection 

P= L= v= T= Point Max. T= Point Min. 

kN m km/h Nr. Nr. m Nr. Nr. m 

600 7 4 0,337 12 4 -0,333 

1200 10 4 0,064 2 6 -0,014 

100 50 4 4 0,099 8 4 -0,003 

100 3 4 0,136 13 4 -0,012 

200 3 4 0,114 10 4 -0,055 

300 7 4 0,208 2 4 -0,209 

600 9 7 0,141 1 6 -0,065 

1200 2 7 0,016 7 5 -0,070 

1000 50 
50 4 4 0,051 8 4 

-

0,000079 

100 4 4 0,051 8 4 
-

0,000328 

200 4 4 0,051 8 4 -0,001 

300 4 4 0,052 8 4 -0,005 

600 4 4 0,063 14 4 -0,026 

1200 3 4 0,173 8 4 -0,093 

100 
50 4 4 0,098 8 4 

-

0,000573 

100 4 4 0,099 8 4 -0,00257 

200 4 4 0,416 5 4 -0,373 

300 5 4 0,189 12 4 -0,071 

600 3 4 0,225 8 4 -0,072 

1200 10 4 0,147 3 5 -0,059 

8. GRAPHICAL INTERPRETATIONS OF CRITICAL STATES

Dependently on type of question given for particular technical solution, 

appears various needs for graphical interpretation of calculated results. 

Some examples are given in the Figs 3-8. They presents the more 

interesting and representative diagrams. 

Fig. 3 Diagram of critical stresses in function of slenderness for 

homogenous bar, made from some different materials:  a) steel, 

b) brazen c) aluminium, d) timber (see Ref. 27)
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Table 6. Deflections  w  of bridges by division of the girders on  n=10 

sections – points position of loading and maximums and minimums 

Force Span 
Velo-

city 

Posi-

tion P 
Deflection 

Posi-

tion 

P 

Deflection  

P= L= v= T= Point Max T= Point Min. 

kN m km/h Nr. Nr. m Nr. Nr. M 

200 

50 

50 5 5 0,050 10 5 -0,00047 

100 5 5 0,051 10 5 -0,00246 

200 3 5 0,121 16 5 -0,068 

300 6 5 0,051 11 5 -0,026 

600 9 5 1,129 16 5 -1,153 

1200 13 5 0,064 2 7 -0,016 

100 

50 5 5 0,098 10 5 -0,005 

100 5 5 0,173 18 5 -0,101 

200 3 5 0,114 13 5 -0,051 

300 3 5 2,176 10 5 -1,977 

600 11&14 3&7 0,184 5 7 -0,092 

1200 15 1 0,066 4 1 -0,059 

1000 

50 

50 5 5 0,050 10 5 -0,000099 

100 5 5 0,050 10 5 -0,00041 

200 5 5 0,051 10 5 -0,002 

300 8 5 0,005 2 2 -0,006 

600 5 5 0,056 12 5 -0,028 

1200 3 5 0,151 10 5 -0,075 

100 

50 5 5 0,097 10 5 -0,0007 

100 5 5 0,098 10 5 -0,004 

200 4 5 0,127 15 5 -0,008 

300 4 5 0,355 12 5 -0,271 

400 6 5 0,259 17 5 -0,141 

500 7 5 0,318 12 5 -0,277 

600 4 5 0,211 10 6 -0,065 

700 9 5 0,256 16 5 -0,254 

800 7 5 0,161 15 5 -0,146 

900 1 3 2,385 16 3 -2,428 

1000 14 5 3,210 5 5 -3,143 

1100 14 5 0,250 4 6 -0,182 

1200 13 5 0,152 4 6 -0,067 

1500 10 3 0,140 2 8 -0,064 

1800 10 5 0,262 1 5 0,035 

2100 1 9 -0,012 9 5 -0,342 

2400 16 2 0,020 9 4 -0,114 

2700 16 9 0,506 10 5 -0,543 

 

Fig. 4 Diagram of critical stresses in function slenderness  for analysis 

of ultimate (global) slenderness for whole compressed bar composed 

from steel ((1) and timber (2) (see Ref.27) 

So, diagrams from Figs 3 and 4 are based on the most popular up to now 

Euler’s solutions for compressed bars. But in the second case its cross-

section is composed of two materials. 

Table 7. Torsion angles  of girder cross-section, for force  P=1000 kN. 

Position force P and places of maximums and minimums, by bar 

division on  n=10. 

Span 
Velo-

city 

Posi-

tion 

 P 

Rotation 

Posi-

tion 

P 

Rotation Rotation 

L= v= T= Point Max. T= Point Min. Max. Min. 

m km/h Nr. Nr. rad Nr. Nr. rad Degree Degr. 

50 

50 3 4 0,011 18 5 -0,003 0,63 -0,19 

100 3 3 0,022 12 3 -0,016 1,26 -0,92 

200 5 5 0,049 15 5 -0,044 2,82 -2,53 

300 10 8 1,553 3 7 -1,496 88,98 -85,7 

600 18 4 -0,00064 4 4 -0,003 -0,036 -0,17 

1200 14 2 0,00023 8 6 -0,0008 0,013 -0,05 

100 

50 5 5 0,006 16 5 -0,002 0,318 -0,12 

100 5 7 0,009 12 7 -0,008 0,535 -0,46 

200 5 5 0,063 14 5 -0,060 3,587 -3,44 

300 15 6 0,005 4 4 -0,002 0,265 -0,11 

400 18 5 0,00092 10 5 -0,022 0,053 -1,24 

500 18 9 -0,00008 8 5 -0,003 -0,004 -0,17 

600 15 9 0,00018 9 4 -0,0015 0,011 -0,09 

700 11 9 0,000363 9 3 -0,0014 0,021 -0,08 

800 10 8 0,002799 9 3 -0,003 0,160 -0,19 

900 11 2 0,000505 7 7 -0,001 0,029 -0,06 

1000 10 2 0,000242 7 6 -0,001 0,014 -0,03 

1100 13 2 0,000187 8 6 -0,0005 0,011 -0,03 

1200 10 2 0,000517 9 5 -0,0007 0,030 -0,04 

1500 12 4 0,000056 7 7 -0,0003 0,003 -0,02 

1800 10 6 0,000036 8 8 -0,0002 0,002 -0,01 

2100 10 5 0,001062 9 7 -0,0012 0,061 -0,07 

2400 11 3 0,000023 8 8 -0,0001 0,001 -0,006 

2700 10 1 0,00002 8 8 -0,00017 0,001 -0,004 

Next, in the Fig 5 is shown diagram of critical ultimate surface, for bar 

combined 3 external loadings: P – longitudinal compressing force and 

two bending moments. 

In the Fig 6 is given example of ultimate critical izo-surface for 

compressed bar. Safe zone is inside (below) calculated diagram. 

The Fig 7 presents diagram of critical curves for eccentrically 

compressed bar. Here, is possible critical state by bar tension, too. 

The Fig 8 shows two deflections of bridge in 11 time moments. The first 

for mass travelling with low velocity and regular deflections, and the 

second with very high, over critical velocity, with chaotic vibrations 

(deflections).  

Deflections of analysed above bridges discussed in the chapter 7, are 

similar to that shown in the Fig 8. 

The diagrams interpreting data presented in the Tables1-4, will be 

published by other occasion. 

Fig. 5 Critical ultimate surfaces 3D for straight bar with length 400 cm 

with rectangular composite (steel and timber) cross-section, under 

action of combined loadings: P, M2 and M3. Safe zone is inside this 

surface (see Refs 68, 69). 
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The other, next numerous examples of various diagrams can be found in 

papers with review character, Refs 56, 60, 64, 70. 

Fig. 6 Ultimate critical izo-surface for the compressed straight bar with I 

cross-section and with length L=200 cm, (see Ref. 68, 69). The diagram 

indicates critical force position and its value. 

Fig. 7 Diagrams of critical forces Pk1 , Pk2  , and Pk3=P2. The last is 

much bigger from critical force Pkr=Pk2 . The bar has the length 

L=200 cm and I cross-section (see Refs 68, 69). The bar is compressed 

eccentrically by force located on vertical axis of symmetry 

Fig. 8 Comparison of deflections of bridge girder for 11 time moments 

under mass 100 t travelling with two velocities: 36 and 3600 km/h (see 

Refs 44, 45, 56, 71). In the 11-th moment loading is after the bridge. 

The task is very similar to discussed above in chapter 7 

9. CONCLUSIONS

Presented in this paper results very wide investigations over behaviour 

and critical states of bridges, confirm rightness of theses formulated by 

present author in Uniform Criterion. It replenishes very systematic long 

tests executed through many years documented in author’s publications 

since about 1979. Simultaneously, it proves possibility to apply it to 

determination of critical states of bridges under moving loads. 

In above text were not discussed wider confirmations of numerical 

results by experiments, Refs 1, 50, 60. 

Here it is worthy to indicate three papers oriented on stability problems, 

giving in easy way a few valuable examples – Refs 46, 47, 69. They 

extend described above topics. Also, can be recommended papers Refs 

50, 51, 53, 58, 71 as important supplement of presented above material. 

As the last, yet once should be turned attention on precision of 

numerical calculations, what is discussed relatively frequently in 

literature e.g. Refs 47, 76. So, on presented Tables 1-7 we can observe 

different calculated values. The most visible cases appear in Table 4 for 

 . There, commercial program MS Excel can not to calculate   , but 

contrary own program DGPST has given expected value. 
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